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System-on-Chip (SoC) Design

• Combines all elements of a computer onto a single chip

– Microprocessor

– Memory

– Address- and Databus

– Periphery

– Application specific logic

• Software development must take place on simulation models or 
FPGAs until the actual chip is fabricated

• Hardware/Software Co-Design issues: Need to make educated 
guess on what becomes hardware and what is done in Software 
early in the design process
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“Soft” IP Blocks

• Synthesizable HDL code (commercial HDL is usually encrypted)

• From Synopsys Designware, Opencores, MIPS, etc.

• Can be implemented on any Library

• HDL for 8051, 6800 available

• Usually highly configurable
– Cash (Yes, No, How big, Code/Data separate or unified)

– Pipelined (Yes, No)

– SRAM interface (single cycle, multi cycle)

– User Defined Instructions

• Timing, Area and Power depend on process, CAD tools used, and user 
skills

• Popular Example: Synopsys DesignWare
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“Hard” IP Blocks

• Fully implemented, verified mask layout block

• Available only for specific process

• Not configurable

• Guaranteed Timing, Area, Power Consumption

• E.g. MIPS Hard-IP cores

Note:

SOCks uses Soft-IP cores
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The Leon Core

• Available in the public domain (under GNU License)

• http://www.gaisler.com/

• Synthesizable VHDL soft-core

• Highly configurable for many different scenarios

• Verified in several silicon implementations

• Contains AMBA controller

• Turbo-Eagle uses 2 instances of Leon:
– Master CPU called “Leon”

– Slave CPU called “DSP” (a Leon core configured for DSP)

• “Leon” has been modified by Cadence for this project to run at twice 
the bus frequency and to use 2-port instead of 3-port RAMs

• “DSP” still runs at bus frequency

http://www.gaisler.com/
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The AMBA bus (1)

• Developed by ARM
• http://www.arm.com/products/solutions/AMBAHomePage.html
• Common bus interface for rapid SoC development
• Paradigm: “Design Reuse”

– Only need to code and verify a block once
– Can use over and over in other AMBA systems

• Avoids glue logic between blocks with custom busses
• “AMBA Compliance Testbench” to certify blocks as compatible
• “AHB” – High Speed Version
• “APB” – Peripheral low speed version

– Use Bridge to interface to “AHB”
– Less stringent requirements for low throughput blocks
– Isolates critical bus segments from slower blocks

http://www.arm.com/products/solutions/AMBAHomePage.html
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The AMBA Bus (2)

• Multiplexed, not tri-stated
– Uses dedicated Point-2-Point links 

between blocks
– Uses Multiplexer to establish link and 

grant bus
– Avoid long busses that connect to 

many blocks
– Possible because wire density much 

greater than with discrete 
components

• 1 transfer takes 2 cycles:
1. Address Phase
2. Data Phase

• Transfer Types
– Single Word
– Burst
– Split

• Only positive-edge logic
– Easier timing analysis
– Supports more libraries
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SoC Design Flow
1) Firmware Design
• “Firmware” is the code that is executed on an embedded system

• Not visible to the consumer

• Typically resides in Flash memory

– Can update code in the field

– Can offer user to download firmware

• Tools used:

– GCC SPARC compiler, linker and assembler

– Installed on the ECE servers “skew” and “vulcan”

– Include “/opt/rtems/bin” in your $PATH variable: 
setenv path (/opt/rtems/bin:$PATH)
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SoC Design Flow
2) RTL Design
• VHDL, Verilog or mixed design (SystemC in the future)

• Instantiate memories and PHYs in testbench

• Load RAM and ROM images into testbench

• Run Simulation, capture output in file

• Compare file to golden file (known good output)

• Tools used:

– Cadence Incisive Platform:

– NC-VHDL, NC-Verilog, NC-SIM
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SoC Design Flow
3) Synthesis
• Generate timing models for all RAMs

• Partition design into blocks

• Create timing constraints

• Synthesize blocks and toplevel

• Output netlist and toplevel timing constraints

• Tools used

– Cadence Encounter Platform:

– PKS, BuildGates or RTL Compiler

Note: Synthesis not part of SOCks Project
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SoC Design Flow
4) Physical Implementation
• Generate geometry abstracts for all RAMs

• Create floorplan, place RAMs, crate power structures

• Partition design into blocks and implement each block

• Load blocks, flatten toplevel

• Run final timing and DRC analysis

• Tools used:
– Cadence Encounter Platform:

– SOC Encounter, Nanoroute, Fire&Ice

Note: Physical Implementation not part of SOCks Project 
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SOCks Overview
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Add your digitial 
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The “cubing” logic is 
located here by default
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Leon Overview
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SOCks Design Flow
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Getting SOCks

• Make sure you have 50MB space available

• Use “quota –v” to check

• Install the data:
tar xvf /import/vlsi7/jgrad/socks/socks.tar

• This will create a folder ./socks

• Add this line to the bottom of your .cshrc file:
set path (/opt/rtems/bin $path)

• Test it by seeing if the compiler is found:
which sparc-rtems-g++

• Remember to run skew or vulcan. From other machines, do
ssh skew or  ssh vulcan
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SOCks Distribution Content

Directory Description

./exe Unix scripts to compile and simulate the SOCks ASIC

./doc SOCks Documentation

./firmware C/C++ Source Code Folder

./firmware/cube Demo program #1

./firmware/bubblesort Demo program #2

./sim HDL Simulation Folder

./testbench VHDL test-bench code

./testbench/include Test-bench include files

./testbench/Tcl TLC Scripts for NC-Sim

./hdl HDL Folder

./hdl/custom HDL for the Custom Logic

./hdl/TOP HDL for the ASIC toplevel

./hdl/rtllib Compiled HDL folder

./hdl/rtllib/custom Compiled Custom logic

./hdl/rtllib/top Compiled Top-level logic
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SOCks Design Flow
1) Setting up a firmware folder
• Creating a new source code folder

– cd ./firmware

– cp –r bubblesort project1

• Use the “bubblesort” project as a template

• Put your C code into leon_test.c

• You can create as many folders as you want in the “firmware”
folder

• For simulation you will then specify which firmware-folder to use
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SOCks Design Flow
2)  Compiling the Firmware
• Creating and compiling the source code
cd project1

[emacs | pico | etc.] leon_test.c

make

• All compilation instructions are in “Makefile”

• Simply type “make” and your code will be compiled and linked

• Use emacs or pico as your text editor

• The compilation result will be in “ram.dat” and “rom.dat”

• Those will be read into the testbench memories
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SOCks Design Flow
3) Creating Digital Logic
• In this step digital logic is created that will go into the “custom”

block

• This block communicates with the Leon through the Amba bus

• Creating and compiling the custom logic HDL
cd ../../hdl/custom

[emacs | pico | etc.] custom_top.v

cd ..

../exe/socks_compile

• Your folder has to be called “custom”

• The compiler will compile all files that end in “.v”

• “Compile” in this context means to build a HDL simulation 
model, not a binary fom C code
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SOCks Design Flow
4) Running the Simulation
• Running the simulation (replace “project1” with the name of your 

firmware folder)
cd ../sim

../exe/socks_sim project1

• Running the simulation and creating waveforms for the custom 
logic

../exe/socks_sim project1 partial

simvision&

• Running the simulation and creating waveforms for the entire 
design

../exe/socks_sim project1 full

simvision&
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SOCks Design Flow
5) Clean Up
• Removing all temporary data to save space

cd ..

exe/socks_clean

• This removes all temporary data

• Can be helpful to minimize disk space usage

• Also useful to force the tool to re-compile and build everything
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Example:
The Cube Example
• This a very simple SOC:

– Software is running on the Leon

– Hardware acceleration is provided for “x=y3”

• Steps to run this:
cd firmware/cube

make

cd ../../hdl

../exe/socks_compile

cd ../sim

../exe/socks_sim cube

cat INT.OUTPUT

• The firmware used the function to output numbers

• That output can be found in INT.OUTPUT
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Example
The Bubblesort Program
• This is a software-only example

• The custom-logic is still “x=y3” but we will not use it

• All we do is compile firmware and run it on the Leon
cd firmware/bubblesort

make

cd ../../hdl

../exe/socks_compile

cd ../sim

../exe/socks_sim bubblesort

• The output is printed directly on the screen
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