
The SOCks Design Platform

Johannes Grad

Johannes Grad, IIT

System-on-Chip (SoC) Design

• Combines all elements of a computer onto a single chip

– Microprocessor

– Memory

– Address- and Databus

– Periphery

– Application specific logic

• Software development must take place on simulation models or
FPGAs until the actual chip is fabricated

• Hardware/Software Co-Design issues: Need to make educated
guess on what becomes hardware and what is done in Software
early in the design process

Johannes Grad, IIT

“Soft” IP Blocks

• Synthesizable HDL code (commercial HDL is usually encrypted)

• From Synopsys Designware, Opencores, MIPS, etc.

• Can be implemented on any Library

• HDL for 8051, 6800 available

• Usually highly configurable
– Cash (Yes, No, How big, Code/Data separate or unified)

– Pipelined (Yes, No)

– SRAM interface (single cycle, multi cycle)

– User Defined Instructions

• Timing, Area and Power depend on process, CAD tools used, and user
skills

• Popular Example: Synopsys DesignWare

Johannes Grad, IIT

“Hard” IP Blocks

• Fully implemented, verified mask layout block

• Available only for specific process

• Not configurable

• Guaranteed Timing, Area, Power Consumption

• E.g. MIPS Hard-IP cores

Note:

SOCks uses Soft-IP cores

Johannes Grad, IIT

The Leon Core

• Available in the public domain (under GNU License)

• http://www.gaisler.com/

• Synthesizable VHDL soft-core

• Highly configurable for many different scenarios

• Verified in several silicon implementations

• Contains AMBA controller

• Turbo-Eagle uses 2 instances of Leon:
– Master CPU called “Leon”

– Slave CPU called “DSP” (a Leon core configured for DSP)

• “Leon” has been modified by Cadence for this project to run at twice
the bus frequency and to use 2-port instead of 3-port RAMs

• “DSP” still runs at bus frequency

http://www.gaisler.com/

Johannes Grad, IIT

The AMBA bus (1)

• Developed by ARM
• http://www.arm.com/products/solutions/AMBAHomePage.html
• Common bus interface for rapid SoC development
• Paradigm: “Design Reuse”

– Only need to code and verify a block once
– Can use over and over in other AMBA systems

• Avoids glue logic between blocks with custom busses
• “AMBA Compliance Testbench” to certify blocks as compatible
• “AHB” – High Speed Version
• “APB” – Peripheral low speed version

– Use Bridge to interface to “AHB”
– Less stringent requirements for low throughput blocks
– Isolates critical bus segments from slower blocks

http://www.arm.com/products/solutions/AMBAHomePage.html

Johannes Grad, IIT

The AMBA Bus (2)

• Multiplexed, not tri-stated
– Uses dedicated Point-2-Point links

between blocks
– Uses Multiplexer to establish link and

grant bus
– Avoid long busses that connect to

many blocks
– Possible because wire density much

greater than with discrete
components

• 1 transfer takes 2 cycles:
1. Address Phase
2. Data Phase

• Transfer Types
– Single Word
– Burst
– Split

• Only positive-edge logic
– Easier timing analysis
– Supports more libraries

Johannes Grad, IIT

SoC Design Flow
1) Firmware Design
• “Firmware” is the code that is executed on an embedded system

• Not visible to the consumer

• Typically resides in Flash memory

– Can update code in the field

– Can offer user to download firmware

• Tools used:

– GCC SPARC compiler, linker and assembler

– Installed on the ECE servers “skew” and “vulcan”

– Include “/opt/rtems/bin” in your $PATH variable:
setenv path (/opt/rtems/bin:$PATH)

Johannes Grad, IIT

SoC Design Flow
2) RTL Design
• VHDL, Verilog or mixed design (SystemC in the future)

• Instantiate memories and PHYs in testbench

• Load RAM and ROM images into testbench

• Run Simulation, capture output in file

• Compare file to golden file (known good output)

• Tools used:

– Cadence Incisive Platform:

– NC-VHDL, NC-Verilog, NC-SIM

Johannes Grad, IIT

SoC Design Flow
3) Synthesis
• Generate timing models for all RAMs

• Partition design into blocks

• Create timing constraints

• Synthesize blocks and toplevel

• Output netlist and toplevel timing constraints

• Tools used

– Cadence Encounter Platform:

– PKS, BuildGates or RTL Compiler

Note: Synthesis not part of SOCks Project

Johannes Grad, IIT

SoC Design Flow
4) Physical Implementation
• Generate geometry abstracts for all RAMs

• Create floorplan, place RAMs, crate power structures

• Partition design into blocks and implement each block

• Load blocks, flatten toplevel

• Run final timing and DRC analysis

• Tools used:
– Cadence Encounter Platform:

– SOC Encounter, Nanoroute, Fire&Ice

Note: Physical Implementation not part of SOCks Project

Johannes Grad, IIT

SOCks Overview

Simulation Testbench

AHB Bus

Leon

AHB
Controller

Memory
Controller

Sparc
CPU

Custom Logic

AHB
Slave Interface

External
Memory

RAM/ROM

IO Monitor:
Text Output
File Output

Clock/
Reset

Generator

SOCks ASIC

Add your digitial
logic here

The “cubing” logic is
located here by default

Johannes Grad, IIT

Leon Overview

Johannes Grad, IIT

SOCks Design Flow

HDL Simulator: NC-Sim

Leon
Custom
Logic

VHDL Compiler
Verilog Compiler

Custom
Logic

HDL Code

Firmware

C/C++
Code

C/C++ Compiler
Object Linker

ram.dat
rom.dat

Simulation
Waveforms TXT.OUTPUT INT.OUTPUT

Johannes Grad, IIT

Getting SOCks

• Make sure you have 50MB space available

• Use “quota –v” to check

• Install the data:
tar xvf /import/vlsi7/jgrad/socks/socks.tar

• This will create a folder ./socks

• Add this line to the bottom of your .cshrc file:
set path (/opt/rtems/bin $path)

• Test it by seeing if the compiler is found:
which sparc-rtems-g++

• Remember to run skew or vulcan. From other machines, do
ssh skew or ssh vulcan

Johannes Grad, IIT

SOCks Distribution Content

Directory Description

./exe Unix scripts to compile and simulate the SOCks ASIC

./doc SOCks Documentation

./firmware C/C++ Source Code Folder

./firmware/cube Demo program #1

./firmware/bubblesort Demo program #2

./sim HDL Simulation Folder

./testbench VHDL test-bench code

./testbench/include Test-bench include files

./testbench/Tcl TLC Scripts for NC-Sim

./hdl HDL Folder

./hdl/custom HDL for the Custom Logic

./hdl/TOP HDL for the ASIC toplevel

./hdl/rtllib Compiled HDL folder

./hdl/rtllib/custom Compiled Custom logic

./hdl/rtllib/top Compiled Top-level logic

Johannes Grad, IIT

SOCks Design Flow
1) Setting up a firmware folder
• Creating a new source code folder

– cd ./firmware

– cp –r bubblesort project1

• Use the “bubblesort” project as a template

• Put your C code into leon_test.c

• You can create as many folders as you want in the “firmware”
folder

• For simulation you will then specify which firmware-folder to use

Johannes Grad, IIT

SOCks Design Flow
2) Compiling the Firmware
• Creating and compiling the source code
cd project1

[emacs | pico | etc.] leon_test.c

make

• All compilation instructions are in “Makefile”

• Simply type “make” and your code will be compiled and linked

• Use emacs or pico as your text editor

• The compilation result will be in “ram.dat” and “rom.dat”

• Those will be read into the testbench memories

Johannes Grad, IIT

SOCks Design Flow
3) Creating Digital Logic
• In this step digital logic is created that will go into the “custom”

block

• This block communicates with the Leon through the Amba bus

• Creating and compiling the custom logic HDL
cd ../../hdl/custom

[emacs | pico | etc.] custom_top.v

cd ..

../exe/socks_compile

• Your folder has to be called “custom”

• The compiler will compile all files that end in “.v”

• “Compile” in this context means to build a HDL simulation
model, not a binary fom C code

Johannes Grad, IIT

SOCks Design Flow
4) Running the Simulation
• Running the simulation (replace “project1” with the name of your

firmware folder)
cd ../sim

../exe/socks_sim project1

• Running the simulation and creating waveforms for the custom
logic

../exe/socks_sim project1 partial

simvision&

• Running the simulation and creating waveforms for the entire
design

../exe/socks_sim project1 full

simvision&

Johannes Grad, IIT

SOCks Design Flow
5) Clean Up
• Removing all temporary data to save space

cd ..

exe/socks_clean

• This removes all temporary data

• Can be helpful to minimize disk space usage

• Also useful to force the tool to re-compile and build everything

Johannes Grad, IIT

Example:
The Cube Example
• This a very simple SOC:

– Software is running on the Leon

– Hardware acceleration is provided for “x=y3”

• Steps to run this:
cd firmware/cube

make

cd ../../hdl

../exe/socks_compile

cd ../sim

../exe/socks_sim cube

cat INT.OUTPUT

• The firmware used the function to output numbers

• That output can be found in INT.OUTPUT

Johannes Grad, IIT

Example
The Bubblesort Program
• This is a software-only example

• The custom-logic is still “x=y3” but we will not use it

• All we do is compile firmware and run it on the Leon
cd firmware/bubblesort

make

cd ../../hdl

../exe/socks_compile

cd ../sim

../exe/socks_sim bubblesort

• The output is printed directly on the screen

	The SOCks Design Platform
	System-on-Chip (SoC) Design
	“Soft” IP Blocks
	“Hard” IP Blocks
	The Leon Core
	The AMBA bus (1)
	The AMBA Bus (2)
	SoC Design Flow1) Firmware Design
	SoC Design Flow2) RTL Design
	SoC Design Flow3) Synthesis
	SoC Design Flow4) Physical Implementation
	SOCks Overview
	Leon Overview
	SOCks Design Flow
	Getting SOCks
	SOCks Distribution Content
	SOCks Design Flow1) Setting up a firmware folder
	SOCks Design Flow2) Compiling the Firmware
	SOCks Design Flow3) Creating Digital Logic
	SOCks Design Flow4) Running the Simulation
	SOCks Design Flow5) Clean Up
	Example:The Cube Example
	ExampleThe Bubblesort Program

