
ECE 485 FINAL PROJECT – Multi-cycle Architecture with Wishbone Interface – 
 

 1

  
Abstract— A 32-bit MIPS Architecture based microprocessor with Wishbone interface to memory is 

implemented. The microprocessor supports a predefined set of microinstructions including type R, type I and 
type J instructions. This set includes different arithmetic and logic functions, as well as memory access 
instructions, branches and jumps. The communication between the microprocessor and the main memory is 
implemented with a Wishbone Interface. The complete design was implemented using VHDL. Final results 
and simulations supporting each of the microinstructions behavior are included at the end of this report.  
 

I. INTRODUCTION 
 

HE main objective of this project is to implement a 32-Bit Microprocessor that supports a defined set of the 
MIPS Instruction Set Architecture. The microprocessor is implemented entirely in VHDL. The functions allowed 

are: NOP (No operation), AND, OR, XOR, NOR, ADD, SUBTRACT and Set on Less Than. These functions can be 
accessed via a type R instruction that has the two operands in the Register File (RF) or via a type I instruction in 
which one of the operands is the data in one register in the RF and the other is contained within the instruction itself. 
In addition to these instructions the ISA implemented includes: Load Upper Immediate (higher 16 bits in a 32 bit 
word), Load Word (RF register = Memory data), Store Word (Memory position = RF data), Branch when Equal and 
Not Equal (BEQ, BNE), Jump, Jump Register and Jump and Link. 
 
The microprocessor implemented is based on the Multi-cycle datapath explained in the class text book1 and the 
distributed class example, the single cycle datapath in VHDL. This Multi-cycle datapath had a limited support with 
respect to the microinstructions desired and therefore needed modifications in order to support them. The memory 
size is 512 x 32bits and it’s assumed to be in Princeton format, i.e. same memory for both instructions and data. To 
comply with the project requirements the first 256 words are used only for instructions and the lower 256 words for 
data, however all the memory can be addressed by the program. 
 
Exception support was also required in the microprocessor. Given the required ISA, the exception functions 
capabilities are limited. Two different types of exceptions can be handled. The first one occurs when the 
microinstruction code is invalid meaning the instruction is incorrect. The other occurs when a type R or type I 
instruction results in an overflow, as can happen with addition and subtraction functions.  
 
One final requirement of the project is to implement a Wishbone interface between the microprocessor and the 
memory. The Wishbone architecture permits the connection of circuit functions together in a simple, efficient and 
portable way. It is an open core architecture that is widely spread and utilized and hence its implementation in this 
project. The Wishbone architecture specifies two or more circuits that communicate through an interconnection 
interface called Intercon2. There are different types of Wishbone Interconnections and the one implemented is a 
simple Master/Slave point to point Intecon. The details of the implementation will be explained later in this report. 

 
 
1 J. Hennessy and D. Patterson, Computer organization and Design. Morgan Kaufmann Publishers, San Francisco, 1998. 
2 Silicore Corporation Website, “Wishbone Frequently Asked Questions” http://www.silicore.net 

Multi-cycle MIPS Architecture with Wishbone 
Interface 

- ECE485 Final Project - 
IVAN DARIO CASTELLANOS 

T 



ECE 485 FINAL PROJECT – Multi-cycle Architecture with Wishbone Interface – 
 

 2

 

II. DATAPATH DESCRIPTION AND IMPLEMENTATION 
 
As stated before, the datapath is based on the class textbook’s multi-cycle datapath. The resulting datapath after 
modifications is shown in the next page in figure 1. The determining factor on how to modify the datapath depends 
completely on the Instruction Set to be supported. This is defined in the Project Requirements and is also shown in 
table 1. The components that were designed and modified are explained in the following sections.  
 

Opcode Function
(31 : 26) (5 : 0)
000000 000000 NOP No Operation
000000 100100 AND and $1, $2, $3
000000 100101 OR or $1, $2, $4
000000 100110 XOR xor $1, $2, $5
000000 100111 NOR nor $1, $2, $6
000000 100000 Add add $1, $2, $7
000000 100010 Subtract subtract $1, $2, $8
000000 101010 Set Less Than slt $1, $2, $9
001100 xxxxxx AND imm. andi $1, $2, 100
001101 xxxxxx OR imm. ori $1, $2, 101
001110 xxxxxx XOR imm. xori $1, $2, 102
001000 xxxxxx Add imm. addi $1, $2, 103
001001 xxxxxx Subtract imm. subi $1, $2, 104
001010 xxxxxx Set Less Than imm. slti $1, $2, 105
100011 xxxxxx Load Word lw $1, 100($2)
001111 xxxxxx Load Upper Imm. lui $1, 100
101011 xxxxxx Store Word sw $1, 100($2)
000100 xxxxxx Branch Equal beq $1, $2, 100
000101 xxxxxx Branch Not Equal bnq $1, $2, 100
000010 xxxxxx Jump j 100
000011 xxxxxx Jump and Link jal 100
000000 001000 Jump Register jr rs

Instruction Meaning

 
     Table 1. Instruction Set requirements3. 
 

A. 32-Bit ALU 
 
The 32-Bit ALU must support the different logic and arithmetic functions required. It was based in the class 
homework were a 32 bit ALU was designed. Only a slight modification was needed in order for it to support the 
NOR function. All other functions were supported using the single bit ALUs designed and the Most Significant Bit 
ALU. The inputs of the ALU are: both 32 bit operands (A and B) and a 3 bit control line, “operation” (Refer to table 
2). The design uses the 9 gates Full Adder to implement all logic functions without additional gates. Only an inverter 
is needed to obtain the NOR result. The VHDL file of the bit_ALU, msb_ALU and the 32-Bit ALU is included in 
Appendix B. 

 
3 J. Stine, “ECE485 Final Project, Multi-cycle MIPS Architecture with Wishbone Interface”, Illinois Institute of Technology, 2003 



ECE 485 FINAL PROJECT – Multi-cycle Architecture with Wishbone Interface – 
 

 3 

 
 
  Figure 1. Multi-cycle Datapath. All control signals are in bold and in this letter type (write enable signals for the PC are explained in figure 2). 
 
 



ECE 485 FINAL PROJECT – Multi-cycle Architecture with Wishbone Interface – 
 

 4

 

B. ALU Control 
 
The initial ALU control had to be modified as well since there is support for additional functions. Specifically the 
microprocessor accepts now Type I instructions which vary the format in which the textbook’s ALU control receives 
the operation to be performed. In this case the function field of the micro-instruction (Instruction [5-0]) doesn’t 
determine the type of operation to be performed. This information is contained instead in the Opcode (Instruction 
[31-26]). The ALU Control receives also a two bit input from the main control (ALUOp) which forces the ALU to do 
Subtract (for BEQ, BNE and exception support), Add (Memory location operations, PC update), or the operation 
required by the type R or type I instruction. Another possible approach was to change the operation codes of the type 
R instructions in order to have fewer inputs into the ALU control (just opcode field) but this approach was avoided 
since it would restrict the microprocessor to be used with the MIPs instructions. 
 
Not all bits of the Opcode or the function are necessary for the ALU control to determine which operation to 
perform. Table 1 reveals that the ALUControl might be implemented with only the Opcode [3-0] (Instruction[29-26]) 
and the Function [3-0] bits, i.e. 8 bits instead of the complete 12 (Opcode [5-0], Function [5-0]). Table 2 shows the 
behavior of the ALUControl. 
 
 

ALUOp To ALU Operation
(From control) (Operation) Performed

00 xxxx xxxx 010 Add
x1 xxxx xxxx 110 Subtract
1x 0000 0000 010 Add
1x 0000 0010 110 Subtract
1x 0000 0100 000 AND
1x 0000 0101 001 OR
1x 0000 0110 100 XOR
1x 0000 0111 101 NOR
1x 0000 1010 111 slt
1x 1000 xxxx 010 Addi
1x 1001 xxxx 110 Subtracti
1x 1010 xxxx 111 slti
1x 1100 xxxx 000 ANDi
1x 1101 xxxx 001 ORi
1x 1110 xxxx 100 XORi

Opcode[3-0] 
(Instruction [29-26])

Function[3-0] 
(Instruction [3-0])

 
 Table 2. ALUControl unit inputs and 3 bit Output. 
 
Espresso was used to derive the logic functions that implement the ALUControl. These functions can be seen in the 
VHDL file of this unit, alucontrol.vhd, included in Appendix B. 
 

C. Branch if Not Equal (BNQ) microinstruction support 
 
The example datapath in the project definition4 did not support this function and therefore a modification was 
needed. The previous datapath supported the BEQ instruction when the control sets the PCWriteCond bit high. This 
allows the PC register to be updated if the ALU zero signal is asserted, indicating that the subtraction is zero and both 
numbers are equal. In order to support BNQ the function shown in figure 2 was implemented. 
 
 
 
 
 

4 J. Stine, “ECE485 Final Project, Multi-cycle MIPS Architecture with Wishbone Interface”, pg. 6.  Illinois Institute of Technology, 2003 

Type R 

Type I 



ECE 485 FINAL PROJECT – Multi-cycle Architecture with Wishbone Interface – 
 

 5

 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 Figure 2. Support for BNQ microinstruction. 
 
PCWbnq  is always set high by the control. Only when the BNQ instruction is performed the main control unit sets 
this line to zero. In this way the output of the NOR gate is only high when the ‘zero’ signal from the ALU is equal to 
0, indicating that both values subtracted are not equal; permitting the branch to take place on the falling edge of the 
clock. 
 

D. LUI Instruction Support 
 
The LUI instruction is supported by incrementing the size of the Register File ‘Write Data’ multiplexor. This 
multiplexor was initially a 2 to 1, 32 bit multiplexor. It is changed for a 4 to 1 multiplexor. Input number 3 of the 
mux is determined by the Instruction[15-0] field (see figure 1). The LUI operation loads the immediate value from 
this field in the upper 16 bits of a desired register. Therefore a “Low Zero Extend” unit is implemented to place zeros 
in the lower 16 bits of the 32 bit word, and place the 16 bits from the instruction in the upper 16 bits of the word. The 
selection signal for the mux is therefore 2 bits wide, MemtoReg. The Main Control Unit performs the instruction 
fetch (IF) and then continues to the next state by setting this signal to ‘11’ and asserting the RF write enable bit. 
 

E. Jump and Link, Jump Register microinstruction support 
 
To support the Jump Register instruction the ALU B Mux is hardwired to a value of 0 in its third input (see figure 1). 
This input was previously set by the “shift left 2” unit but its no longer needed since the word format is defined to be 
of 32 bits instead of 4 8-bit words; avoiding the necessity to shift the address left by 2. During the Execution phase, 
EX, the Main control sets the select input of Mux B to 3. The PCSource Mux select bit is set to 0 as well, the ALU 
operation is add and the PCWrite is enabled. The result is that the input A of the ALU is added to zero and the result 
($rs content) is fed to the PC. 
 
The Jump and Link instruction requires further modifications. The RF Write Register Mux is incremented to a 4-1 
32bit mux and has input number 2 hardwired to the value of $ra (assumed to be 31dec, or 11111b). The RF Write 
Data mux is fed in its input 2 the output of the program counter (which during the Instruction Decode phase, ID, is 
PC+1). The main control therefore sets the RF write enable bit, sets the Write Register mux select input to 2 and sets 
the Write Data mux select input to 2. This actions, during ID phase, write the value of PC+1 to register $ra and then 
continuing to the Execution phase in the same way as the jump instruction already supported, allowing the PC update 
and performing the jump. See figure 1. 

PC Register 

D  Q 

clk  
PCWrite PCWriteCond 

Zero 

PCWbnq  
Zero

To memory
PCWbnq Zero Out

0 0 1
0 1 0
1 0 0
1 1 0

out



ECE 485 FINAL PROJECT – Multi-cycle Architecture with Wishbone Interface – 
 

 6

 
 

F. MEMORY AND WISHBONE INTERFACE 
 
The project definition required a 32bit x 256 word memory for instructions and 32bit x 256 word memory for data. A 
single memory was therefore implemented for simplicity, with the upper 256 words designated for instructions and 
the lower 256 for data. Nevertheless, all the memory may be addressed by the program. Since the memory is fixed to 
512 words it only requires 9 bit for its address input. The PCSource mux, Memory Address mux and the PC register 
were therefore downsized to 9 bits as well, instead of the unnecessary 32 bits. 
 
The interface between the microprocessor and the memory is implemented with the Wishbone Interface. As 
explained before, there are different possible Interconnections available but the one chosen for simplicity is the 
Master/Slave point to point Intercon. 
 
The Wishbone interface that was implemented was based on the Wishbone library for VHDL5. This library specifies 
the Wishbone interface as seen in figure 3 and figure 4 for a point to point connection Intercon.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
     Figure 3. Wishbone Point to point Intercon.          Figure 4. Wishbone Memory wrapper (to connect to    
                                     Wishbone interface). 
 
Figure 3 shows two important signals that the main control unit must handle. These are the Strobe Output (STB_O) 
and the Acknowledge (ACK). The Strobe Output indicates a valid data transfer cycle. The Slave must assert the 
Acknowledge signal in response, indicating a successful communication over the bus. The main control is designed 
therefore to wait until the ACK_I signal is received indicating a successful memory access operation. If the ACK_I 
signal is not asserted then the main control was defined to wait until this signal arrives. 
 
Figure 4 shows the “Wishbone Wrapper” proposed in [3]. This circuit will allow the memory to be compatible with a 
Wishbone Architecture interface as desired. The Acknowledge signal is always asserted when an incoming Strobe 
signal is detected. This might imply that the main control “waiting” state might not be necessary but nevertheless it is 
implemented in order to maintain a true Wishbone compatibility. The WE bit is also ANDed with the Strobe bit to 
allow memory access only when the STB bit is asserted. 
 
The memory VHDL File (mem512.vhd) is included in Appendix B as well as the “wrapper” (memwb.vhd). 
 
 

G. Main Control Unit 
 

 
5 Silicore Corporation, “WISHBONE Public domain library for VHDL” technical reference manual, Minnesota, 2001. 

CLK_I 
ADR_O 
DAT_I 

 
DAT_O 

WE_O 
SEL_O 
STB_O 
ACK_I 

CYC_O 
 

CLK_I 
ADR_I 
DAT_I 
 
DAT_O 
WE_I 
SEL_I 
STB_I 
ACK_O 
CYC_I 
 

Main Clock 

UNUSED 

UNUSED 

Data_in 
Address 

 
WE 

Data_read 
Clock 

Memory 

Data_I 
ADR_I 
ACK_O 
STB_I 
WE_I 
Data_O 
Clock 

Wishbone Slave 
Interface 

RAM Memory 
Interface 

WISHBONE 
“WRAPPER” 



ECE 485 FINAL PROJECT – Multi-cycle Architecture with Wishbone Interface – 
 

 7

The Main Control unit is the microprocessor element that required the most design effort and time. The project 
definition required the Main Control unit to be implemented using a ROM memory instead of a logic gate and 
register FSM. The ROM data width is equal to all control outputs required to control the datapath. The total number 
of control signals necessary is 22. Each word in the memory will represent a state denoting each of the phases of the 
instruction execution, IF, ID, EX, MEM and WB. It is important to remember that not all phases are used by all 
instructions; some can require all 5 stages while others will be ready in 2. The state words are stored in the ROM in a 
way that facilitates their addressing by some control logic according to the instruction to be performed. It is 
important to note as well that the main control designed has the Wishbone control interface built in and therefore a 
separate unit is not necessary. 
 
Figure 6 shows the state diagram of the main control unit.  Table 3 shows as well all states implemented and their 
outputs. A clear understanding of how the states are sequenced can be obtained from table 4 and table 5 which show 
the contents of the ROM. As stated before, it is up to the control logic to sequence the states correctly, according to 
the instruction to be performed. 
 
Table 4 shows the actual contents of the control ROM and table 5 shows this value in hexadecimal format, in the 
same way the memory is initialized with table 4 data via a .mif file. The ROM is a 22 bit x 40 memory. Depending 
on the operation to be performed, the control logic selects the appropriate address for the ROM to start. The 
sequencing is then handled by a counter which increments the address by one until the operation is finished. The 
Instruction Fetch phase is performed at the end of each instruction, allowing the control logic to know which 
operation is to be performed next and where to address its beginning. The only situations that can disturb the counter 
linear sequencing are: Illegal Operation exception, Overflow exception and waiting for the Acknowledge response 
from memory (Wishbone). These possibilities should also be addressed by the control logic. Figure 5 shows the Main 
Control Unit implemented. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Figure 5. Main Control Unit. 

ROM 
38 x 22 bits 

22 
Control 
Outputs 

REGISTER 

Inst_Address 

Control Logic 

Counter + 1 

0     1     2     3 

6 

2 

6 

6 
6 Overflow Exception ROM address 

24 hex 

6 

6 

1 

1 

ACK, from 
memory 

IRWrite STB_O 

1 

Inst_Func 
Instruction [31, 29-26] | Instruction [5, 3] 

8 



ECE 485 FINAL PROJECT – Multi-cycle Architecture with Wishbone Interface – 
 

 8

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. Main Control State diagram. IF, ID, EX, MEM and WB labels are included only to show which step #             
the main  control is executing. For example the MEM label does not necessarily mean that there is a memory 
access, only that it  is the fourth step in the execution. 

ALUSrcA = 0 
IorD = 0 

IRWrite = 1 
WE = 0, STB_O = 1 

ALUSrcB = 01 
ALUOp = 00 
PCWrite = 1 

PCSource = 00 

1 

 
 

ALUSrcA = 1 
ALUSrcB = 10 
ALUOp = 00 

5 

 
 

WE = 0 
IorD = 1 

STB_O = 1 

12 

 
 

RegDst = 10 
RegWrite = 1 

MemtoReg = 10 

3 
 
 
 

PCWrite = 1 
PCSource = 10 

11 

 
 

RegDst = 00 
RegWrite = 1 

MemtoReg = 11 

4 

 
 

ALUSrcA = 0 
ALUSrcB =11 
ALUOp = 00 

2 

 
 

NOP 
 

All control lines= 0 

0 

 
 

PCWrite = 1 
PCSource = 10 

PCWriteCond = 0 
PCWbnq = 1 

10 

 
ALUOp = 01 
ALUSrcA = 1 
ALUSrcB = 00 
PCWrite = 0 

PCWriteCond = 1 
PCWbnq = 1 

PCSource = 01 

8 

 
 

ALUSrcA = 1 
ALUSrcB = 00 
ALUOp = 10 

6 

 
 

RegWrite = 1 
MemtoReg = 01 

RegDst = 00 

15 

NOP operation 

jal instruction 
Always, except 
jal and lui 

lui instruction 

Instruction 
Fetch 

Jump 

EX 

ALU Type R 

SW or LW 

 
 

WE = 1 
IorD = 1 

STB_O = 1 
 

13  
 

RegDst = 01 
RegWrite = 1 

MemtoReg = 0 

14 

IntCause = 0 
CauseWrite = 1 
EPCWrite = 1 
ALUSrcA = 0 
ALUSrcB = 01 

PCWrite 
PCSource = 11 
ALUOp = 01 

17 

 
ALUSrcA = 1 
ALUSrcB = 10 
ALUOp = 10 

 

7 
 

ALUOp = 01 
ALUSrcA = 1 
ALUSrcB = 00 
PCWrite = 0 

PCWriteCond = 0 
PCWbnq = 0 

PCSource = 01 

9 

Illegal 
Instruction 
(EXCEPTION) 

IntCause = 0 
CauseWrite = 1 
EPCWrite = 1 
ALUSrcA = 0 
ALUSrcB = 01 

PCWrite 
PCSource = 11 
ALUOp = 01 

16 

jr 

ALU Type I 

BEQ 

BNE 

Op = LW 
Op = SW 

ACK = 0 
(Wishbone) ACK = 0 

(Wishbone) 

Overflow 
(EXCEPTION) 

EX 

EX 
EX 

EX 

EX 

EX 

MEM MEM 
MEM 

WB 

INT 

INT 

ID 
ID 

ID 

Overflow 
ACK = 1 

(Wishbone) 
ACK = 1 

(Wishbone) 

ACK = 1 
(Wishbone) 

ACK = 0 
(Wishbone) 



ECE 485 FINAL PROJECT – Multi-cycle Architecture with Wishbone Interface – 
 

 9 

 
 
 
 
 
 
 
 
 
 
 

 
  Table 3. All possible states implemented that support the ISA required. Their sequencing depends on the way they are stored in the ROM and the Control logic. IF, ID, EX, MEM and  
 WB labels are included to show which step the main control is executing. 
 
 
 

STATE # STB_O CauseWrite IntCause EPCWrite RegDst RegWrite ALUSrcA ALUSrcB WE MemtoReg IorD IRWrite PCWrite PCWriteCond PCWbnq ALUOp PCSource
0 No Operation NOP 0 0 0 0 00 0 0 00 0 00 0 0 0 0 1 00 00
1 Always (IR = Memory[PC], PC = PC+4) IF 1 0 0 0 00 0 0 01 0 00 0 1 1 0 1 00 00
2 Always, except (jal & lui) (A = Reg[IR[25-21]], B ID 0 0 0 0 00 0 0 10 0 00 0 0 0 0 1 00 00
3 jal instruction ($ra = PC + 1) ID 0 0 0 0 10 1 0 00 0 10 0 0 0 0 1 00 00
4 lui instruction ($rt = constant) ENDS ID 0 0 0 0 00 1 0 00 0 11 0 0 0 0 1 00 00
5 Mem reference(ALUOut = PC + se(IR[15-0]) ) EX 0 0 0 0 00 0 1 10 0 00 0 0 0 0 1 00 00
6 ALU-R instruction (ALUOut = A op B) EX 0 0 0 0 00 0 1 00 0 00 0 0 0 0 1 10 00
7 ALU-Imm instruction (ALUOut = A op se(IR[15-0]EX 0 0 0 0 00 0 1 10 0 00 0 0 0 0 1 10 00
8 BEQ (if (A == B) PC = ALUOut) ENDS EX 0 0 0 0 00 0 1 00 0 00 0 0 0 1 1 01 01
9 BNE  (if (A != B) PC = ALUOut) ENDS EX 0 0 0 0 00 0 1 00 0 00 0 0 0 0 0 01 01

10 Jump and jal (PC = PC[31-28] || IR[25-0]) ENDS EX 0 0 0 0 00 0 0 00 0 00 0 0 1 0 1 00 10
11 jr (PC = $rs) ENDS EX 0 0 0 0 00 0 1 11 0 00 0 0 1 0 1 00 00
12 Mem reference/Load MEM 1 0 0 0 00 0 1 10 0 00 1 0 0 0 1 00 00
13 Mem reference/Store ENDS MEM 1 0 0 0 00 0 1 10 1 00 1 0 0 0 1 00 00
14 ALU Operation Type R ENDS MEM 0 0 0 0 01 1 1 00 0 00 0 0 0 0 1 00 00
15 ALU Operation Type Imm ENDS MEM 0 0 0 0 00 1 1 10 0 00 0 0 0 0 1 00 00
16 Load ( Reg[IR[20-16]] = MDR ) ENDS WB 0 0 0 0 00 1 1 10 0 01 1 0 0 0 1 00 00
17 Overflow Interrupt INT 0 1 1 1 00 0 0 01 0 00 0 0 1 0 0 01 11
18 OtherOp Interrupt INT 0 1 0 1 00 0 0 01 0 00 0 0 1 0 0 01 11



ECE 485 FINAL PROJECT – Multi-cycle Architecture with Wishbone Interface – 
 

 10 

 
 
 
 
 
 

 
Table 4. Actual content of the control ROM. Each instruction has a linear sequence. The control logic addresses the ROM to begin at the desired operation (position) and a counter increments 
by one the address until the operation finishes. The control logic selects the new address start point according to the next instruction. 
 
 
 

STB_O CauseWrite IntCause EPCWrite RegDst RegWrite ALUSrcA ALUSrcB WE MemtoReg IorD IRWrite PCWrite PCWriteCond PCWbnq ALUOp PCSource
NO OPERATION NOP 0 0 0 0 00 0 0 00 0 00 0 0 0 0 1 00 00
INSTRUCTION FETCH IF 1 0 0 0 00 0 0 01 0 00 0 1 1 0 1 00 00
Always, except (jal & lui) ID 0 0 0 0 00 0 0 10 0 00 0 0 0 0 1 00 00
Mem reference(ALUOut = A + se(IR[15-0]) ) EX 0 0 0 0 00 0 1 10 0 00 0 0 0 0 1 00 00
Mem reference/Load MEM 1 0 0 0 00 0 1 10 0 00 1 0 0 0 1 00 00
Load ENDS WB 0 0 0 0 00 1 1 10 0 01 1 0 0 0 1 00 00
INSTRUCTION FETCH IF 1 0 0 0 00 0 0 01 0 00 0 1 1 0 1 00 00
Always, except (jal & lui) ID 0 0 0 0 00 0 0 10 0 00 0 0 0 0 1 00 00
ALU-R instruction (ALUOut = A op B) EX 0 0 0 0 00 0 1 00 0 00 0 0 0 0 1 10 00
ALU Operation Type R ENDS MEM 0 0 0 0 01 1 1 00 0 00 0 0 0 0 1 00 00
INSTRUCTION FETCH IF 1 0 0 0 00 0 0 01 0 00 0 1 1 0 1 00 00
Always, except (jal & lui) ID 0 0 0 0 00 0 0 10 0 00 0 0 0 0 1 00 00
ALU-Imm instruction (ALUOut = A op se(IR[15-0]EX 0 0 0 0 00 0 1 10 0 00 0 0 0 0 1 10 00
ALU Operation  Type Imm ENDS MEM 0 0 0 0 00 1 1 10 0 00 0 0 0 0 1 00 00
INSTRUCTION FETCH IF 1 0 0 0 00 0 0 01 0 00 0 1 1 0 1 00 00
Always, except (jal & lui) ID 0 0 0 0 00 0 0 10 0 00 0 0 0 0 1 00 00
Mem reference(ALUOut = A + se(IR[15-0]) ) EX 0 0 0 0 00 0 1 10 0 00 0 0 0 0 1 00 00
Mem reference/Store ENDS MEM 1 0 0 0 00 0 1 10 1 00 1 0 0 0 1 00 00
INSTRUCTION FETCH IF 1 0 0 0 00 0 0 01 0 00 0 1 1 0 1 00 00
lui instruction ($rt = constant) ENDS ID 0 0 0 0 00 1 0 00 0 11 0 0 0 0 1 00 00
INSTRUCTION FETCH IF 1 0 0 0 00 0 0 01 0 00 0 1 1 0 1 00 00
Always, except (jal & lui) ID 0 0 0 0 00 0 0 10 0 00 0 0 0 0 1 00 00
BEQ (if (A == B) PC = ALUOut) ENDS EX 0 0 0 0 00 0 1 00 0 00 0 0 0 1 1 01 01
INSTRUCTION FETCH IF 1 0 0 0 00 0 0 01 0 00 0 1 1 0 1 00 00
Always, except (jal & lui) ID 0 0 0 0 00 0 0 10 0 00 0 0 0 0 1 00 00
BNE  (if (A != B) PC = ALUOut) ENDS EX 0 0 0 0 00 0 1 00 0 00 0 0 0 0 0 01 01
INSTRUCTION FETCH IF 1 0 0 0 00 0 0 01 0 00 0 1 1 0 1 00 00
Always, except (jal & lui) ID 0 0 0 0 00 0 0 10 0 00 0 0 0 0 1 00 00
Jump and jal (PC = PC[31-28] || IR[25-0]) ENDS EX 0 0 0 0 00 0 0 00 0 00 0 0 1 0 1 00 10
INSTRUCTION FETCH IF 1 0 0 0 00 0 0 01 0 00 0 1 1 0 1 00 00
jal instruction ($ra = PC + 1) ID 0 0 0 0 10 1 0 00 0 10 0 0 0 0 1 00 00
Jump and jal (PC = PC[31-28] || IR[25-0]) ENDS EX 0 0 0 0 00 0 0 00 0 00 0 0 1 0 1 00 10
INSTRUCTION FETCH IF 1 0 0 0 00 0 0 01 0 00 0 1 1 0 1 00 00
Always, except (jal & lui) ID 0 0 0 0 00 0 0 10 0 00 0 0 0 0 1 00 00
jr (PC = $rs) ENDS EX 0 0 0 0 00 0 1 11 0 00 0 0 1 0 1 00 00
INSTRUCTION FETCH IF 1 0 0 0 00 0 0 01 0 00 0 1 1 0 1 00 00
Overflow Interrupt INT 0 1 1 1 00 0 0 01 0 00 0 0 1 0 0 01 11
INSTRUCTION FETCH IF 1 0 0 0 00 0 0 01 0 00 0 1 1 0 1 00 00
OtherOp Interrupt INT 0 1 0 1 00 0 0 01 0 00 0 0 1 0 0 01 11
INSTRUCTION FETCH IF 1 0 0 0 00 0 0 01 0 00 0 1 1 0 1 00 00

Oth-INT

NOP

LOAD

ALU-R

Z-INT

ALU-
Imm

STORE

JAL

JR

LUI

BEQ

BNE

JUMP



ECE 485 FINAL PROJECT – Multi-cycle Architecture with Wishbone Interface – 
 

 11

For memory initialization
0 : 00 00 10 ;
1 : 20 10 D0 ;
2 : 00 20 10 ;
3 : 00 60 10 ;
4 : 20 61 10 ;
5 : 00 E3 10 ;
6 : 20 10 D0 ;
7 : 00 20 10 ;
8 : 00 40 18 ;
9 : 01 C0 10 ;
A : 20 10 D0 ;
B : 00 20 10 ;
C : 00 60 18 ;
D : 00 E0 10 ;
E : 20 10 D0 ;
F : 00 20 10 ;

10 : 00 60 10 ;
11 : 20 69 10 ;
12 : 20 10 D0 ;
13 : 00 86 10 ;
14 : 20 10 D0 ;
15 : 00 20 10 ;
16 : 00 40 35 ;
17 : 20 10 D0 ;
18 : 00 20 10 ;
19 : 00 40 05 ;
1A : 20 10 D0 ;
1B : 00 20 10 ;
1C : 00 00 52 ;
1D : 20 10 D0 ;
1E : 02 84 10 ;
1F : 00 00 52 ;
20 : 20 10 D0 ;
21 : 00 20 10 ;
22 : 00 70 50 ;
23 : 20 10 D0 ;
24 : 1C 10 47 ;
25 : 20 10 D0 ;
26 : 14 10 47 ;
27 : 20 10 D0 ;

There are two main components in the Main Control Unit. One of them is the Control 
Logic unit (figure 5). This unit drives the select input of the multiplexor and therefore 
selects between 4 different sources to feed the address to the ROM. The first input comes 
from the counter which, as explained earlier, just receives the actual address and adds 1. 
This counter is implemented using half adders as shown in figure 7. 
 
 
 
 
 
 
 
 
 
 
 
     Figure 7. Counter module implementation. 
 
The second input to the multiplexor, input 1, comes from the Inst_address module. This 
module receives the instruction to be performed and outputs the correct ROM address at 
which the operation begins. As in the ALU control module not all Opcode and function 
bits are necessary (12 bits) to determine the operation, only 8. These are: Instruction [31, 
29-26] and the Instruction [5, 3]. The inst_address module is completely combinational. 
Espresso was used to determine the logic functions for each of the 6 address outputs 
depending on the inst|func code. The VHDL code implemented uses this equations and 
is also included in Appendix B. 
 
Input 2 of the mux comes from the register that latches the actual address. The purpose 
of this input is to maintain the current address if required by the control logic, i.e. in the 
Wishbone interface when the memory does not reply with ACK assertion when the 
Strobe Output is set high. In this case the control logic forces the address to remain 
unchanged until the Acknowledge sign comes and the memory access operation can be 

performed. 
 
 

The last input, 3, is hardwired to the ROM address of the overflow exception. In the event of an overflow the control 
logic selects the third input of the mux to feed the ROM and therefore the microprocessor enters the Exception state. 
The Control logic is a combinational element and behaves as shown in table 6. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

HA HA HA HA HA HA 

A4A5 A3 A2 A1 A0

1 

O4O5 O3 O2 O1 O0

STB_O ACK IRW rite Overflow OUTPUT (mux select)
0 0 0 0 00 Counter
0 0 0 1 11 Overflow Exc.
0 0 1 0 xx
0 0 1 1 xx
0 1 0 0 00 Counter
0 1 0 1 00 Counter
0 1 1 0 xx
0 1 1 1 xx
1 0 0 0 10 HOLD/ No response
1 0 0 1 10 from memory (mem access)
1 0 1 0 10 HOLD/ No response
1 0 1 1 10 from memory (IF)
1 1 0 0 00 Counter
1 1 0 1 00 Counter
1 1 1 0 01 Instr. Fetch (IF)
1 1 1 1 01 Instr. Fetch (IF)

Table 6. Control logic Truth table. 

Table 5. Actual ROM Contents. 



ECE 485 FINAL PROJECT – Multi-cycle Architecture with Wishbone Interface – 
 

 12

The IRWrite bit cannot be high without the STB_O bit being high as well since the state that sets the IRWrite 
(Instruction Fetch) also sets the STB_O as seen in table 4; therefore the outputs in these cases can be assumed as 
don’t cares. The control logic uses the IRWrite control bit from the ROM output to determine when the 
microprocessor is in the IF state since this is the only one that asserts it. When IRWrite is high the Control Logic 
should permit the Inst_Address module to feed the ROM address in order to begin the new instruction at the correct 
ROM address. Finally, when the overflow bit is high the Control Logic directs the ROM to the correct Overflow 
Exception state (address = 24 hex, see table 4 and 5) to serve the exception. 
 

H. Design Considerations 
 
Each one of the components of the microprocessor was tested independently and extensively to ensure that they 
behave as expected. Detecting errors early in the design flow will avoid the necessity of more time consuming and 
complicated modifications later when the system is assembled. The first major unit assembled together was the 
datapath. It is very important that the datapath works correctly, before designing the control unit since any changes in 
the datapath will require modifications of the control, incrementing the design effort and time required. The memory 
and Wishbone interface were also tested extensively before attempting the design of the Main Control Unit. 
 
Different problems rose as the system size incremented when connecting new modules. One of the biggest challenges 
was the implementation of the memory module.  Different configurations were attempted in order for the memory to 
satisfy the desired specifications. For example, a problem rises when the address and the Data_out are defined as 
registered since the address is sampled in the rising edge of the clock and the respective data will therefore appear 
only until the next rising edge. This behavior will require each memory access state to consume 2 clock cycles 
instead of one, incrementing the complexity of the main control and degrading the overall performance of the 
microprocessor. 
 
In order for the memory to work as desired the address and Data_out inputs were selected as unregistered and the 
Data_in as registered. This means that a memory write event is synchronous while reading is asynchronous; the data 
is ready when the address changes, after a response delay. The same implementation was necessary for the Main 
Control ROM. This behavior is problematic since the data output of the ROM memory can vary until it stabilizes and 
therefore glitches can occur in the control signals which is highly undesirable. For example the PC register might be 
loaded by a glitch when it is not required to do so. The problem was solved by gating the offending control signals 
with the clock (or clock_bar). An example of this can be seen in figure 2, where the PCWrite control signal is gated. 
 

III. RESULTS 

 
The microprocessor was tested extensively. Since the microprocessor contains many different components, the 
results of the verifying simulations of each module are not included due to their extension. In the following section 
only the results that reflect how the complete system behaves are included. All the microinstructions implemented 
were tested extensively as well. Trivial cases as well as random input vectors were tested for the different logic and 
arithmetic operations. However, giving the extension of the different microinstructions available, not all of these 
simulations are included in this report since it would be impractical. Instead, a few input vectors for each 
instruction is shown and marked with detail in the output waveforms, indicating the instruction fetch phase, where 
the result is present, etc.  
 
All microinstructions and exception conditions behaved as expected, indicating a correct implementation of the 
32-bit microprocessor. All arithmetic and logic functions responded correctly to the different input vectors applied 
and the different instructions (jumps, branches, memory access and exception conditions) responded correctly as 
well. 
 
In order to test the microprocessor the different microinstructions should be stored in the RAM as a normal program. 
All different operations, memory access, jumps, branches, arithmetic and logic operations are tested in this way. 
Exception conditions were also tested and included in the result waveforms. 



ECE 485 FINAL PROJECT – Multi-cycle Architecture with Wishbone Interface – 
 

 13

 
Appendix A includes all waveforms preceded with the respective memory initialization for each test. Branches, 
jumps, exception conditions and memory access operations are not included in this section of the report. It is easier to 
visualize their behavior in the waveforms and the .mif files included in appendix A. The results of the different 
arithmetic and logic functions are shown in table 7 and 8: 
 
 
 
 

Logic Operation 1st Operand 2nd Operand Result Obtained Comments
00000000 FFFFFFF 00000000 correct
F3245201 4ABC3A0C 42241200 correct
003273CF 403BF20A 00000000 correct
42241200 7FB0 00001200 correct
00000000 D231 00000000 correct
0032720A 382C 00003008 correct
00000000 FFFFFFF FFFFFFF correct
023428AB 00025426 02742EEB correct
00003012 26011240 26013252 correct
FFFFFFF 2360 FFFFFFF correct
02742EEB 642A 02746EEB correct
26013252 7048 2601725A correct
FFFFFFF 02742EEB FD8BD114 correct
003273CF 403BF20A 400981C5 correct
00003012 26011240 26012252 correct
FD8BD114 4012 FD8B9106 correct
400981C5 002F 400981EA correct
26012252 2252 26010000 correct
023428AB 00025426 FD8BD114 correct
00F03204 A0C67030 5F098DCB correct
00001123 00DC4500 FF23AADC correct

XOR

XORi

NOR

AND

ANDi

OR

ORi

 
Table 7. Logic functions included in Appendix A. NOTE: not all input test vectors used are included in 
the waveforms due  to  the length and complexity increase in the waveforms. Table 7 and 8 only show 
the values extracted and verified  from the waveforms. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



ECE 485 FINAL PROJECT – Multi-cycle Architecture with Wishbone Interface – 
 

 14

HEX DECIMAL HEX DECIMAL HEX DECIMAL
7FFFFFFF 2147483647 00000000 0 7FFFFFFF 2147483647 correct
804421C -21430185 042AB021 69906465 846ED1DD -22073112099 correct

7261A000 1919000576 0004380A 276490 7265D80A 1919277066 correct
846ED1DD -22073112099 A201 -24063 846E73DE -2073136162 correct
7265D80A 1919277066 2645 9797 7265FE4F 1919286863 correct
7FFFFFFF 2147483647 0001 1 80000000 OVERFLOW correct
0042F507 4388103 0038B041 3715137 A44C6 672966 correct
00000000 0 7B042001 2063867905 84FBDFFF -2063867905 correct
A0021E31 -1610473939 7FF26410 2146591760 200FBA21 OVERFLOW correct
0042880B 4360203 9304 -27900 0042F507 4388103 correct
A0026041 -1610457023 4210 16912 A0021E31 -1610473939 correct
00003004 12292 3004 12292 00000000 0 correct
00000001 1 00002402 9218 00000001 1 correct
00003CD8 15576 00002402 9218 00000000 0 correct
00003CD8 15576 00003CD8 15576 00000000 0 correct
00000001 1 0002 2 00000001 1 correct
00002402 9218 1AB3 6835 00000000 0 correct
00003CD8 15576 3CFF 15615 00000001 1 correct

SLT

SLTi

Result obtained

ADD

ADDi

SUB

SUBi

2nd OperandArithmetic Operation Comments1st Operand

 
Table 8. Arithmetic functions included in Appendix A. NOTE: as in table 7, not all input test vectors used are included. 
 
 
TIMING CONSIDERATIONS 
 
In order to obtain the clock frequency at which the processor can operate the critical path of the datapath must be 
analyzed. There are two possible paths that might determine the clock frequency, these are shown in figure 8. 
Although path #2 seems shorter it must be considered that the memory access might not be so fast and therefore a 
timing figure for this path is required. In both cases however the delay of the control signals must be added since the 
Main Control Unit also has its own delay and will therefore affect the different multiplexors and the ALU in the 
datapath. The worst case delay for the ALU must be considered in the calculation. Since the adder and subtracting 
operations are performed by a ripple carry adder then the worst case delay will occur when the carry propagates 
throughout the entire 32 bit carry chain. The test vector utilized to generate the complete carry propagation is the 
addition of 7FFF_FFFFhex + 0000_0001hex. This is the delay that must be considered for the ALU. 
 
 



ECE 485 FINAL PROJECT – Multi-cycle Architecture with Wishbone Interface – 
 

 15

 
Figure 8. Microprocessor Datapath used to obtain maximum operating frequency. Two possible critical paths are shown. (From figure 1) 
 
 

IV. CONCLUSION 
 

 
The design and implementation of this microprocessor required substantial design effort in order to comply with the 
project specifications. All the test vectors and microinstructions were performed correctly as shown in the 
Waveforms. Also, a brief timing analysis was done in order to determine a rough estimation of the maximum 
operating frequency of the device.  
 
Different aspects of the design were particularly challenging, like the memory implementation with the Wishbone 
Interface and the Main Control unit with a ROM based approach. The different issues and conditions encountered 
were addressed successfully and the microprocessor implemented behaves as expected. An important aspect that 
must be noticed is the effect of implementing the Main Control Unit with a ROM and sequencer logic instead of the 
common registered based FSM. Debugging was easier in some cases when the problem was caused by an 
inappropriate control signal. In this case all that was needed was to modify the initialization file of the ROM, 
sometimes by just changing a bit, instead of redesigning the complete FSM. This approach proved to be 
advantageous for this reason; analogous to what is practiced in real life when the Flash ROM BIOS of a computer is 
updated for example.  
 
As a final remark the project provided a very good perspective of the different conditions and issues that might arise 
when designing a simple architecture that would otherwise be difficult to get without being involved directly with its 
design. 

 
 

Path 1 

Path 2 



ECE 485 FINAL PROJECT – Multi-cycle Architecture with Wishbone Interface – 
 

 16

 

REFERENCES 

 
[1] J. Hennessy and D. Patterson, Computer organization and Design. Morgan Kaufmann Publishers, San Francisco, 1998. 
[2] J. Stine, “ECE485 Final Project definition , Multi-cycle MIPS Architecture with Wishbone Interface”, Illinois Institute of Technology, 

2003. 
[3] Silicore Corporation, “WISHBONE Public domain library for VHDL” technical reference manual, Minnesota, 2001. 
[4] Silicore Corporation Website, “Wishbone Frequently Asked Questions”. http://www.silicore.net 
 


